Sox17 regulates organ lineage segregation of ventral foregut progenitor cells.

نویسندگان

  • Jason R Spence
  • Alex W Lange
  • Suh-Chin J Lin
  • Klaus H Kaestner
  • Andrew M Lowy
  • Injune Kim
  • Jeffrey A Whitsett
  • James M Wells
چکیده

The ventral pancreas, biliary system, and liver arise from the posterior ventral foregut, but the cell-intrinsic pathway by which these organ lineages are separated is not known. Here we show that the extrahepatobiliary system shares a common origin with the ventral pancreas and not the liver, as previously thought. These pancreatobiliary progenitor cells coexpress the transcription factors PDX1 and SOX17 at E8.5 and their segregation into a PDX1+ ventral pancreas and a SOX17+ biliary primordium is Sox17-dependent. Deletion of Sox17 at E8.5 results in the loss of biliary structures and ectopic pancreatic tissue in the liver bud and common duct, while Sox17 overexpression suppresses pancreas development and promotes ectopic biliary-like tissue throughout the PDX1+ domain. Restricting SOX17+ biliary progenitor cells to the ventral region of the gut requires the notch effector Hes1. Our results highlight the role of Sox17 and Hes1 in patterning and morphogenetic segregation of ventral foregut lineages.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The septum transversum mesenchyme induces gall bladder development

The liver, gall bladder, and ventral pancreas are formed from the posterior region of the ventral foregut. After hepatic induction, Sox17+/Pdx1+ pancreatobiliary common progenitor cells differentiate into Sox17+/Pdx1- gall bladder progenitors and Sox17-/Pdx1+ ventral pancreatic progenitors, but the cell-extrinsic signals that regulate this differentiation process are unknown. This study shows t...

متن کامل

Transgenic overexpression of Sox17 promotes oligodendrocyte development and attenuates demyelination.

We have previously demonstrated that Sox17 regulates cell cycle exit and differentiation in oligodendrocyte progenitor cells. Here we investigated its function in white matter (WM) development and adult injury with a newly generated transgenic mouse overexpressing Sox17 in the oligodendrocyte lineage under the CNPase promoter. Sox17 overexpression in CNP-Sox17 mice sequentially promoted postnat...

متن کامل

Induction and selection of Sox17-expressing endoderm cells generated from murine embryonic stem cells.

Embryonic stem (ES) cells offer a valuable source for generating insulin-producing cells. However, current differentiation protocols often result in heterogeneous cell populations of various developmental stages. Here we show the activin A-induced differentiation of mouse ES cells carrying a homologous dsRed-IRES-puromycin knock-in within the Sox17 locus into the endoderm lineage. Sox17-express...

متن کامل

SOX17 Regulates Conversion of Human Fibroblasts Into Endothelial Cells and Erythroblasts by Dedifferentiation Into CD34+ Progenitor Cells

BACKGROUND The mechanisms underlying the dedifferentiation and lineage conversion of adult human fibroblasts into functional endothelial cells have not yet been fully defined. Furthermore, it is not known whether fibroblast dedifferentiation recapitulates the generation of multipotent progenitors during embryonic development, which give rise to endothelial and hematopoietic cell lineages. Here ...

متن کامل

Identification of Sox17 as a transcription factor that regulates oligodendrocyte development.

Microarray analysis of oligodendrocyte lineage cells purified by fluorescence-activated cell sorting (FACS) from 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP)-enhanced green fluorescent protein (EGFP) transgenic mice revealed Sox17 (SRY-box containing gene 17) gene expression to be coordinately regulated with that of four myelin genes during postnatal development. In CNP-EGFP-positive (CNP...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Developmental cell

دوره 17 1  شماره 

صفحات  -

تاریخ انتشار 2009